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and
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ABSTRACT

The elastic stress distributions that develop when a thin film of one material is
bonded to a half space of a second material under conditions with a mismatch strain
that results in a state of residual stress. The origin of the mismatch strain may be
temperature change, chemical reaction, remote applied loading on the substrate, or
some other source. The distribution of shear stress at the interface is determined for
the case when the film is thin enough to be idealized as a membrane. A semi-infinite film
is considered first to examine in detail the concentration of shear stress near the edge.
Then, a periodic array of film segments is considered, and the dependence of the stress
distribution and the stress concentration factor on spacing and material parameters
is determined. The special case of an isolated film segment is studied by taking the
spacing distance to be very large compared to the segment width. All problems are
cast in the form of a singular integral equation for the distribution of shear stress at
the interface, and this integral equation is solved numerically for the cases of interest.
Representative results are also presented for the distribution of mean stress and resolved
shear stress in the substrate due to the mismatch strain. Finally, the limitations of the
film idealization of the substrate are discussed. -  *
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1. INTRODUCTION

During fabrication of bi-material systems, mechanical strains that are incompatible

with a stress-free state are often introduced unintentionally. These strains may arise

from thermal processing, reaction swelling or shrinking, alloying or other fabrication

procedure. The joining of the materials across a common interface enforces a kinematic

compatibility that may result in a distribution of mechanical stress throughout the

materials. If conditions are not too severe, the stress is elastic over most of the region

of the bodies.

As the most elementary example of this phenomenon, consider a thin film bonded

to a relatively massive substrate. Any edge effects are ignored for the moment, so the

film is taken to be of unbounded extent in the plane of the common interface and the

substrate is assumed to be a half space. Suppose that the coefficients of linear thermal

expansion of the film and substrate are a and a5 , respectively. If the entire system

then undergoes a temperature change AT, an isotropic membrane tensile stress

Ea - 1- AT(a, - a) (1.1)

is induced in the film. It is tacitly assumed in writing (1.1) that, because of the bulk of

the substrate compared to the film, the substrate expands freely and it merely imposes

its extensional strain on the layer in all directons parallel to the common interface

plane.

At this level of analysis, the interaction of the film and the substrate is co(mpletely

overlooked. Load is transferred from the layer to the substrate in an unspecified way

at remote points and, in the region where the film carries the stress (1), the interface

is traction free. This is at variance with the common belief that the diffcrenitial strain

provides the mechanical driving force for film-substrate separation or other miechai'ical

failure mode. For such separation to occur, there imist some t ra(tioin acting on the

interface. This traction arises from the transfer of load friom the stl)strat ( to t he tili--

and it is typically concentrated near the edge of tlw film. In tle ii,'t ,i( H. a simp])le
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analytical model is developed that leads to an estimate of interface stress near the edge

of a thin bonded layer in the presence of a differential strain.

The mechanical stress concentration near the edge of the film can lead to some

undesirable mechanical consequences. For example, the stress may be large enough

to produce a separation or fracture of the interface, or it may relax by forcing crystal

dislocations into the substrate material from the edge. Of equal interest in other related

work underway, however, is the influence of this stress distribution on nonmechanical

phenomena that are of concern in fabrication and performance of microelectronic and

micro-optical devices. For example, the edge stress field may influence the electrical

properties of the configuration in the case when the substrate material is piezoelectric.

This issue is relevant to the case of a field effect transistor (FET), for instance, for

which the substrate material is gallium arsenide and the gate material is tungsten

silicide or some other suitable conducting material. The influence of the residual stress

distribution on the threshold voltage of a FET due to the piezoelectric effect has been

studied by Ramirez et al (1987). The presence of this edge stress field can also lead to

anomalous diffusion of a dopant or other second species, particularly in the presence of

material defects near the film edge.

The present analysis is aimed at understanding the effect of certain geometrical

features on the interfacial stress distribution due to a differential strain between the

film and substrate. First, the traction distribution on the interface between a semi-

infinite thin film and a substrate is determined. This result gives a clear picture of tle-

asymptotic properties of the interfacial traction distribution, which are also considere(l

on the basis of a conservation integral of elasticity. The problem of induced stress in a

substrate due to a semi-infinite film was studied in a similar way by Hu (1979). Next,

the case of a periodic array of films is analyzed. The case of a single filn of finite extent

emerges as a special case when the periodic gap between films is very large, and other

special cases may be considered as well. Finally, the range of validity of this mo(del

is considered by examining the pertinent elasticity solutions for points very close to

the edge and very far friom the veIge compared to the filn thickness. With this stress
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distribution in hnthe complete stress feld within the substrate mybe determincd,. I
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2. THE INTERFACIAL SHEAR STRESS NEAR AN EDGE

The two dimensional geometry of the system used to examine the edge stress is

shown in Fig. la. In effect, the film and substrate are initially stress and deformation

free. Then, an extensional strain e,, isotropic in the plane of the interface, is imposed

on the film and the film is bonded to the substrate. To enforce this strain, of course, a

stress

E (2.1)

1-V

must be imposed on the film edge. After the film is bonded to the substrate, the stress

on the edge is relaxed. The film now has a traction free edge at x = 0, and therefore it

cannot support the uniform all-around tensile stress (2.1). Instead, the tensile stress in

the x-direction in the film must vary from zero at x = 0 to the value given in (2.1) at

values of x many time greater than the film thickness h. This variation in tensile stress

in the film must be accompanied by a shear traction at the film-substrate interface

which also varies with x, and a main purpose in this section is to determine this shear

traction distribution. To this end, the extensional strains in the x-dircction of both

the film and the substrate surface z = 0 are written in terms of the unknown interface

shear stress r(x). Imposition of the physical requirement that these two extensional

strains are equal leads to an integral equation for r(x).

In the inset in Fig. 1b, the film and substrate are shown to be separate(d but to

be under action of equal but opposite internal shear traction. The filxi is considered(

first. If the tensile stress acting on a cross section at distance .r from the free (,(nd is

a(x), then the overall equilibrium of the film requires that

10(x) = f° r(x') (x'. (2.2)

The stress-strain relation for the filn (nmodellhd as a mnmbrane) that Ir werly accounts

for a imisiiatch strain of f, is

- _ 1 2 1 + 1') E2.3

L L
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where ef(x) and E are the relaxation strain in the x-direction and differential strain,

respectively, in the film. Note that if Ef --* 0 at points far from the edge, then according "_

to (2.3) the stress a approaches the tensile stress o, in (2.1), that is, equations (2.1)

and (2.3) axe consistent. The result of eliminating a(x) from between (2.2) and (2,3) is

1 -v 2 f
ff(x) E o r(x') dx' - e.(1 + v). (2.4)

A result similar to (2.4) for the substrate is next derived. For plane strain, the

relation between the extensional strain in the x-direction E,(x) and the corresponding

stress component ao(x) is
1 2

E(x) V 8 a'x(x). (2.5)

This equation applies at any point of the substrate but, in particular, on the surface

z = 0. From the theory of elasticity (Timoshenko and Goodier, 1970), the stress

az along z = 0 due to a concentrated force acting at x = x' of magnitude P(x') is

-2P(x')/r(x - x'). Thus, replacing P(x') by T(x') dx' and summing over the entire

range of r(x'),
= 2(1 - v2) fo0r(x')dx'

7rE, a -X (2-6)

Because the film and substrate are bonded together as the strains ej and Ex,

develop, these two strains must be equal. Thus,
(1- 2) Z,, 2(1 - v% )f r(x') dx'

h - V2 )  r(x') dx' + 2(1 - -(1± + ,)E 0 = 0 (2.7)Eh 10rE, fo x - 1x'

for 0 < x < oo. This is a linear integral equation for the unknown shear traction

r(x). The shear traction is proportional to e,, which may be positive or negative. The

solution of (2.7) is considered next.

The integro-differcntial equation (2.7) has the form of Prandtl's eqiiation for tHe

aerodynamic load distribution over a wing of finite span in a steady air flow (Nhuskhie-
lishvihi, 1953). The same equation has becen studiedl by Koiter (1935) iii the c~ontCt't-

of structural mechanics, whiere lie was concernedl with load transfe'r (ihara,'t'ristic's ii]
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stiffened elastic sheets. Koiter obtained a formal solution of this equation in the form

of an infinite series by means of integral transform methods and analytic function the- -.

ory. Explicit limiting results that are useful for dealing with the problem at hand

may be extracted from Koiter's work, and the details of his solution procedure are not

reproduced.

Nondimensional coordinates are introduced as = cx/h and ' = KX'/h in terms

of a dimensionless material parameter K = E,(1 - v2 )/E(1 - v2). The equation (2.7)

governing the normalized shear stress f(-) = r(x)/tcao, becomes

f( ')d$ -< j - d' - 1 = 0 (2.8)

for 0 < < oo. An auxiliary condition on the solution of (2.8) concerning the behavior

of f( ) as -- co is obtained from (2.2). If it is recalled that Ef(x) -0 as x -- o,-

then the dimensionless form of the limiting equation is

. /' '= 1. (2.9)

Thus, a solution of (2.8) subject to (2.9) is required.

The Mellin transform defined by

F(s) = j (1)0- d (2.10)

is applied to (2.8) and (2.9), and the determination of f( ) is thereby reduced to the

solution of the difference equation

F(s + 1) = -2s cot(wrs) F(s) (2.11)

subject to the auxiliary condition F(1) = 1. Koiter (1955) pres,'itcd the solution of

(2.11) in the form
2-'- ' G(s + 1)G(5/2 - s)

F(s) =(.2
/77 G( 1/2)G(2 -(2.12)

7-
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where the function G( ) is defined as

It 1 00 -

G(s + 1) =(27r )/2e-j,(8+i)-Y 2  JJ {If(1 + s/n) e-"+s22 (2.13)
n=1

and -, = 0.57722 is Euler's constant. The dimensionless shear stress itself is then given

by the Mellin transform inversion integral

M) = I b-io F(s) - ds (2.14)

where 1/2 < b < 1. For > 0, the integration path in (2.14) may be closed by a

semicircle of very large radius in the left half of the complex s-plane without affecting

the value of the integral. The function F(s) has discrete n-tuple poles at s = 3/2 - n,

n = 1,2,3,... in the left half plane and no other singularities there, so that application

of Cauchy's integral formula yields the result that the value of f( ) is the sum of the

residues of these poles, that is,
00

f(V) = I residue of F(s) - at s = 3/2 - n]. (2.15)n=l

Some details are given by Koiter (1955).

For small values of , that is, for points close to the free end of the film, the

behavior of f( ) is dominated by the first few terms in (2.15). Evaluation of the first

two terms yields

f() (27r )- /2 -0.21938Q 1/2 + 0.12698 1/2 ln (2.16)

which is a good approximation for 0 < < 2. For large values of the convergence

of the series (2.15) is slow. However, an approximation to f( ) for hrge can lb

obtained by closing the path of integration in (2.14) in the remote right half plae

and evaluating the dominant residues of the enclosed poles. The first, two terns of the ,%.

resulting asymptotic approximation are

9 4
f( ) -i., - - : (1.2319 - 2.01n ) (2.17)
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which is a good approximation for C > 5. The transition between the asymptotic

solutions (2.16) and (2.17) is expected to be smooth. -u

The dependence of shear stress r(x) at the film-substrate interface on position x

along the interface is shown in the dimensionless form r(x)/lKao versus Kx/h in Fig. 2,

where r = (1 - v2 )E,/(1 - v2)E and a, is related to the mismatch strain through (2.1).

The asymptotic approximations for small and large values of x/h given in (2.16) and

(2.17) are shown as dashed lines in Fig. 2. The solid curve is the result of solving the

integral equation (2.8) numerically by means of the numerical methods introduced by

Erdogan, Gupta and Cook (1973), based on Chebyshev polynomial representation of the

unknown function and Gaussian integration. The numerical results are similar to those

of Hu (1979) who obtained a solution by a direct finite difference method. It is clear that

the numerical solution is consistent with the asymptotic approximations at either end

of the range of Kx/h, and that it provides a smooth transition between the asymptotic

approximations. Representative values of K for several material systems in the form

n(film material/substrate material) are given by (Ni/Glass) _- 2, K(Al/GaAs) _ 4/5,

n(Au/GaAs) a 1/2 and (Au/Si) -_ 1/3.

Some general observations can be made concerning the stress distribution. The

shear stress near the end x = 0 is of main interest, and the first term of the asymptotic

approximation (2.16) may be written in dimensional form as

r(x)= C1 E - h) K

First, it is noted that the shear stress varies linearly with the mismatch strain f which

is an obvious consequence of linearity of the system. It is also evident from (2.18)

that r(x) is proportional to v/E' . Thus, a reduction of stiffness of either material

component results in a reduction of the stress concentration, other things being fixed.

Also, for fixed elastic moduli and mismatch strain, T(X) is proportional to V/F for any.

x. Thus, the thickness sets the rate of decay of shear stress from the edge.

The infinite singularity in stress r(.r) as r - 0 is iinrealisti(, (f co s,'. ill theA'

-9v



sense that no real material can support such a stress. The stress singularity is a,

consequence of the tacit assumption that the material remains elastic at all stress -"

levels. In reality, the potentially large stress would be relieved locally by some nonlinear

relaxation mechanism, but the shear stress would still be concentrated near the edge of

the layer. From dimensional considerations, the size of the region over which yielding

is expected will scale with the parameter hK(o0/ay) 2 where a. is the tensile yield stress

of the material. Finally, it is noted that the asymptotic result (2.18) can be derived ,

directly, without the need to solve the integral equation (2.8), by means of ener{. 1 _,
methods developed in fracture mechanics. In particular, application of Rice's path

independent J-integral (Rice, 1968) leads to the result immediately. When evaluated

for any closed path in a body under plane strain conditions that does not enclose body

forces or holes, the value of this integral is zero, that is,

J(C) = f[Wn, - ajnjuj] dC = 0 (2.19)

where TV is the elastic strain energy density, ni is the unit vector normal to C, aci are

the rectangular components of the stress tensor, and ui, are the rectangular components 04

of the displacement vector. Consider the integral in (2.19) for the path C shown in Fig. %*

3. The radii of the small and large circular arcs in C are assilneld to be indefinitely V.

small and large, respectively. The integrand of (2.19) vanishes on all parts of C except

on the circular are AB in the substrate and on the line segment DE in the filn. Along.

the latter segment, it is readily shown that
,

J(DE) (1 + v)Elheo
- 2(1 - ) (2.20)

The only way for the value of .J(AB) to balance this cont ribit ion is for the stress to

he square root singular in the sul)strate near the filhii edge, say ...

r 0 for .r < 0 (2.2 1r( ) j i j w r f r . >( 2.21)A-l f,r .> 0

where k is the so-called elastic stiress Ilitenisit factor of linear elastic fract tIre Iiiechiaiiics.

10



If this is the case, then

J(AB) l 2 k2  (2.22)
2E,

From the condition that J(C) = J(AB)+J(DE) = 0, it follows that k = aoV'T- which

reproduces (2.18). The complete stress distribution shown in Fig. 2 can be determined,

however, only by solution of the integral equation (2.8).

...

q.
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3. INTERFACIAL SHEAR STRESS FOR A PERIODIC ARRAY OF FILMS

The integral equation (2.8) for interfacial shear stress T(x) was generated for the

case of a semi-infinite film on a substrate. While this situation provides useful results

on the edge effect for very wide films, it provides no basis for assessing the influence of

lateral dimension of the film on the stress distribution. The integral equation is readily

generalized for the case of films of finite lateral extent or multiple films for this purpose,

as illustrated by Yang and Freund (1984). The particular case of a periodic array of

films is considered here.

The two dimensional configuration is shown in Fig. 4. Each film has width 2b and

the separation distance between adjacent films is 2a. By following the development in

section 2, it can be shown that the interfacial shear stress for the film occupying the

interval -b < x < b on the substrate surface must satisfy

(I1- fZT2)dx 2(1 _ V2 ) 00 b+2m(a+b) 7(X') -1+uE 31
E b 7 (XE m--, b+2m(a+b) X - X - I_

for -b < x < b. The complete elastic field must be periodic in the in x-direction with

period 2(a + b). Consequently,

r(x) =7[x-2m(a +b)], m ...- 2,-1,0,1,2... (3.2)

In view of this periodicity, the infinite sum in the integral equation may he rewritten

as

00f b+2 1n(n+b) [.r' - 2r(a + b)] (IX . ~3.3)

M -0fb+2m(a+b) r - X

With a change of variable of integration in ead integral from X' to C n 'corIill to

x' - 2m(a + 1,), the l limits of ixt'grIoti ol col i idepl'elident ()f m. , t hlie d '

12- I



of summation and integration may be reversed, that is,

00 b b7( W = d( d

m=-0 -bx--2m(a + b) b x-

(3.4)
+ b r) 2(x -) d3.

b r() (x - )2- 4m 2(a + b) 2

The series has a sum in terms of elementary functions given by Gradshteyn and Ryzhik

(1965) as
Zm 20 - 6-1 - coto 

(3.5)Em27r2 - 02

for the appropriate range of 0. The integral equation is reduced to

(-rA L ) d ± +bV') i- o d = (1±+v)e0, (3.6)(Eh2 b()d + ( + b) b - 1 ()ctL2(a + b)I

for -b < x < b. Note that the cotangent function in the kernel of the integral equation

behaves as 2(a + b)/r(x - ) for (x - ) < (a + b), so that the kernel is still a Cauchy

kernel.

The condition that the tension in the film is zero at x = -b is incorporated into

(3.6). The tension must also vanish at x = b and, on the basis of overall equilibrium,

this will be assured if

I -b()d =0. (3.7)

Thus, a solution of the integral equation (3.6) subject to the auxiliary condition (3.7)

is sought.

The numerical method employed in the preceding section once again provides aIi

efficient means of obtaining accurate solutions. Some results on the complete interfaial

shear stress distribution are sumnarized in the form of plots of r(x)/lao, versus (1 +x/b)

for -b < x < 0 in Figs.4 and 5. The results in these variables may be (xpressed in

terms of the two (Iimensionless parameters Kb/h and a/b. The shear stress distribution

for several values of h'b/h are shown in Fig. 5 for the situation of a single filn segment

-13-



of width 2b on the surface. This is equivalent to the case of periodic films when the

individual film segments are widely spaced, that is, when a/b --* O with b/h held fixed. l

Calculations were carried out for the case of periodic films with a/b = 20, and the

results were indistinguishable from those in Fig. 5. Likewise, the value a/b = 1/20

represents the situation of films with edges in close proximity compared to the lateral

extent of each film. The integral equation for two semi-infinite films separated by a

gap of 2a may be obtained from (3.6) by letting a/b --* 0 with a/h held fixed. This

result was also solved independently with the results differing only slightly from those

for a/b = 1/20.

Shear stress distributions for several combinations of Kb/h and a/b are shown in

Fig. 6. This figure shows typical results for the influence of film proximity in the

periodic array on stress level. Evidently, for a given value of Kcb/h, the level of shear

stress is elevated by moving the films closer together, but the overall increase is not

significant unless a/b becomes small compared to unity, except possibly for the value

of the edge singularity.

The strength of the singularity in interfacial shear stress is defined by

k = lim r(x)\/2ir(x + b). (3.8)x-,b-

The influence of geometrical parameters on the edge singularity is shown in Fig. 7. This

figure shows plots of the normalized stress intensity factor defined in (3.8) at the edge

x = -b. From the figure, it is clear that if the film is indeed thin so that Kb/h K< 1 and

if the individual segments are widely spaced, so that a/b > 1, then the stress intensity

factor is virtually independent of these geometrical parameters. However, for situations

other than widely spaced, very thin segments, the figure suggests rather complic'ated

behavior. For example, the dependence of k/ca' \/-7-' on Kb/h is fundamentally different

for the cases when a/b > 1 and a/b < 1. Furthermore, for a given value of cl/h, the

stress intensity factor k/co0 /-it depends strongly on a/l) as a/b decreases to values less

than unity. Indeed, //,V --- 0 as n/b -+ 0 for any given value of tb/h.

14 -
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These results have implications for the failure of a very wide single film due to

tensile cracking through the thickness, followed by delamination fracture due to the

resulting edge stress concentration in the newly created segments. For example, suppose

that through the thickness cracks are introduced at widely separated places, say at

intervals of 30 h/K. Then, with reference to Fig. 7, this starting situation corresponds to

a point with rb/h = 15 and a/b very small, say about a/b = 0.05. Further, suppose that

the corresponding level of stress intensity factor is large enough to drive delamination

fractures in either direction along the interface away from the through-thickness cracks.

The effect is to increase the value of the geometrical parameter a/b and to reduce b/h

which, in turn, leads to a reduction in level of stress intensity. Thus, the growth

can continue until the value of k has been reduced to a level below that required to

sustain growth of delamination cracks, and the process can then stop. For the thin

film idealization used here, the portion of the film that is detached from the substrate

plays no role whatsoever in determining the stress distribution in the attached portion

of the film or in the substrate. Consequently, partially debonded films are treated in

the same way as bonded segments with the debonded portion simply ignored.

-15-
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4. STRESS STATE IN THE SUBSTRATE

Once the interfacial shear stress between the film and substrate is determined the

state of stress in the substrate may be calculated by superposition over the appropriate

concentrated boundary force solution. For example, an expression for one component

of stress is

Gz(XY) 2 -r(x') dx'
TJ (X - X') 2 + -. 4.1

where L is the union of intervals in x' along the surface of the substrate that are covered

by film segments.

The stress distribution in the substrate has been determined for several combina-

tions of geometrical parameters by numerical evaluation of the integrals such as the one

in (4.1). Representative results are shown in Figs. 8 and 9. In Fig. 8, the distribution

of mean normal stress in the substrate is shown for the case of periodic film segments

with tcb/h = 10 and a/b = 0.5. The result is in the form of a surface over the x, z-plane

where the elevation of the surface represents the level of normal stress. A fihn, which

carries residual tension, occupies -10 < Kx/h < 10 on Kz/h = 0, and a gap between

identical film segments occupies 10 < Kr/h < 20. Because of symmetry, results are

shown for only half of the film segment and half of the gap, to a depth of Kz/h = 15 in

the substrate. Mean normal stress is selected for presentation because the gradient of

this field is the driving force for chemical diffusion of point defects in the substrate. For

example, interstitial components in the substrate will diffuse from regions of low mean

normal stress to regions of high mean normal stress with transport flux in the directioii

of the gradient spatial gradient vector. Thus, a qualitative observation based oil Fig. S

is that interstitial components in the substrate will tend to diffuse from under the film

into the region under the gap, with maximum concentration developing iiear the filn

edge and near the substrate surface in the gap region.

The similar surface in Fig. 9 shown the distribution of resolved shear stress oi .X

plane in the substrate inclined at angles of ±/4 to the substrate surface. This stress

measure is selected for presentation 1)e'aise of the importance of the resolve(d shear

16



stress on dislocation glide planes in a crystalline substrate for dislocation defect gen-

eration and motion. The values of the various geometrical parameters are the same

for this illustration as for Fig. 8. It is evident that the local interfacial shear stress

concentration can be relieved by forcing glide dislocations into the substrate as shown

schematically in Fig. 10 and the resolved shear stress shown in Fig. 9 provides the

driving force for this process. Figs. 8 and 9 provide some motivation for further study

of both the diffusion and dislocation generation issues in connection with the thin film

edge stress concentration.

0
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5. ASYMPTOTIC PROPERTIES OF STRESS DISTRIBUTION

The idealization of the film as an elastic memabrane in the presCnt study leads

to a boundary value problem that is relatively simple. Consequently, the problem

can be analyzed in some detail and the results are instructive in illustrating edge stress

concentration effects in thin film configurations, at least in a qualitative sense. However,

the idealization is quite extreme for certain purposes, and the shortcomings must be

kept in mind in considering specific applications.

Essentially, the membrane idealization implies that the film resists deformation

only if that deformation includes extension or contraction of the mid-plane of the film.

There is no resistance to bending or to transverse shear of the filn. While these

features are expected to provide a basis for accurate description of the deforniation

of the film over most of its length, they become suspect at points close to film edges

where stress gradients are large (that is, stress changes significantly over distances

comparable to film thickness) and where shear deformation effects become important.

Because deformation by shear is precluded in the membrane idealization, the response

to the edge shear stress observed in the analysis is stiffer than it would be if shear

deformation were included. Consequently, the edge stress concentration is more severe

than it would be in a more complete description of the edge effect.

Indeed, for points very close to the corner at x = 0, z = 0 the structure of the

mechanical fields may be determined by examining the states of stress that can exist ill

the case of plane strain deformation of an elastic quarter plane bon(de(d to an elastic half

plane. For correspondence to the problem class under study here, the quarter plane

should be subject to an extensional mis-natch strain of magiitnide f" il tie plane.

of the common interface. This problem may be treated by the eigemn-va lue approach

developed by Bogy (1971) for problems of this type. In irticular, it can be shown that

the stress field in the vicinity of the corner (that is, within the region whmere ,r/h <. 1

in the present case) varies with distance r from the edge as r-' where o is a root of

a transcendental equation in tle range 0 < R((I) < 0.5. For the p;articmlar c: s, whecn

1s
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the two materials are the same, K = 1 and a = 0.4555 (Bogy (1971)). In any case, tile

singularity in stress at the corner is weaker than the membrane model suggests. The

membrane model can be expected to provide a good description of the stress fields,

taking into account the finite thickness of the layer in some way, only for nr/h greater

than about 1/2.

The stress distribution in the substrate at points far from the film edged compared

to the thickness of the film is easy to determine. In all cases in which the film is

moderately thin, the interfacial shear stress is concentrated within about one or two

film thicknesses of t'e film edge. Thus for remote points it appears that concentrated

forces act at the film edges, and the magnitude of the concentrated force in each case is

simply the resultant of the edge stress concentration. For example, in the simplest case

of a semi-infinite film discussed in section 2, the resultant force of the interfacial stress

distribution is hao, so the stress distribution in the substrate at points far from the

edge compared to the film thickness is that of a concentrated force of this magnitude.

The study of this issue of the edge stress concentration is continuing. In situations

where it is important to have accurate quantitative descriptions of stress distributions,

it is possible to obtain them by computational methods. This has been done, for

example, in a calculation aimed at estimating the influence of the piezoelectric effect

on threshold voltage in a field effect transistor. However, the development of simple

models of thin film structures is proceeding in parallel in the hope that the general,

qualitative results that follow from such models can provide a general framework for

the problem area.
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FIGURE CAPTIONS V.

Fig. 1 A schematic diagram of a film-substrate system; (a) the coordinate system and

parameters, and (b) film and substrate separated to illustrate the interfacial shear

stress r(x).

Fig. 2 Normalized interfacial shear traction versus normalized distance along the inter-

face, where K = (1 - 2)E,/(l - v')E, ao is the stress in the layer due to mismatch

strain, and h is the film thickness.

Fig. 3 The contour C in the physical plane used for application of the conservation inte-

gral (2.19) to obtain the asymptotic form (2.18).

Fig. 4 A schematic diagram of a periodic array of film segments each of width 2b attached

to a substrate with spacing 2a, with each segment subjected to the same mismatch

strain.

Fig. 5 Normalized interfacial shear stress versus distance from the left edge of a filn

segment, for the configuration shown in Fig. 4, with a/b -+ c.

Fig. 6 Normalized interfacial shear stress versus distance from the left edge of a film

segment, for the configuration shown in Fig. 4, for several values of the dimensional

parameters Kb/h and a/b.

Fig. 7 The normalized strength of the edge stress intensity factor k as defined in (3.S) I,

versus normalized film width for several valued of the spacing parameter a/1).

Fig. 8 Normalized mean normal stress (o + a + azz)/3o'o versus position (r. z it the

substrate for Kb/h = 10, a/b = 1/2. Half of a film segment cov'rs 0 < ,.hr/h < 10,

z/h = 0 and the interval 10 < Kx/h < 15, Kz/h = 0 corresponds to half of a gap'

between segments.

Fig. 9 Resolved shear stress on planes inclined to the interface at ±45' (and iormial to

the x, z-plane) versus position (.r, z) in the substrate for the sanie ),araiet ers ;is

22



in Fig. 8. The resolved shear stress is normalized by ao.

Fig. 10 Schematic diagram showing straight glide dislocations on the planes inclined ;t

±450 to the interface that relieve the edge stress concentration.

*I

4k -

21

23



h yE X

\x\x -- ANN-

Figure 1

% N

A

S,,:k



WVF 17IL X7 v L PW-%i r,-ju r m Nv vv

*0

C\2o

0

.0 N /X-) -



Figure 3



Il S

I L P L



C) 0 C

CQ

0~ co z

0 ~ C5 +

.4 .6 6 . ..
Ld0



0
-4

u~) 06
0 -~ II II
II II ~Q

PD

c~ (~ 6
0 0

C\2 C\2 ~
ii ti II II

~Q PD PD PD (0

(0 U

I
I

I

0
"U

~ ..

o

I I I
(0 -~ C C\1 -~ 0

0 0 0 0
I~.

~\ ~.
-w

0
DY /(X)~L.

~. .~s

-~ -w-'. ~~, ~ .~.v



a -- - -

A

6
* C\2

I ** I*

U *

I S
'I

a *
I * 6,a I

S * *s
I S
I I
S *
I *

0
I * I
I *a I

* II II ii 'I 'Ia I

* I

*: ~ c~
* a I I I
I
* I

* I I I
a I II

II
* I

* U
* a
* I

*

90
I S *111

S 'a

* I S ~ *5.
* I S 5

* a I
* I S I
* a I ~

0 E~J

- las

I I I
(0 C\2 (0 CC -±

- C

(qcv) 0.o
V

Id.

'ala

0



NOV Is

tQ5.

ILI



"A"%

-A1

-QLIIY~ 
,.%l "Srm



r ~ ~~' )I~ ~J~ M'. '~ ~ ~V ~! ~ 1l~~~w .'av.- -wN- -

/ \

/ "Glide Planes -

Figure 10

'p
0

- "5 ,



- ~4 72E -- -

7r . .& .


